“抱歉,看来我还是玩不了这种玩具。”林晓很快重新将它捡了起来,笑着说了一句,不过,随后他便说道:“当然,在大多数人眼中,这也仅仅只是一个玩具。”
“不过,在我的眼中,或者各位研究拓扑学的朋友们眼中,这是一个很经典的一维拓扑同胚体。”
“现在,就让我们先尝试用数字来描述一下它。”
林晓说着,PPT也随之翻页,出现了从数学上对slinky这个几何图形的描述。
而后他说道:“霍奇猜想研究各个维度下的拓扑同胚的多项式解集。”
“而对于(1,1)类的霍奇猜想,已经在1924年由 Lefschetz证明,也即是说霍奇猜想对于H^2成立,霍奇提出这个猜想,也是基于Lefschetz的证明。”
“那么,我手中的这个玩具,作为一个一维流形,它对于霍奇猜想,显然是能够成立的。”
“但是,我们该如何将它拓展到更高维度呢?”
林晓提出的问题,引起了下面所有人的思考。
是啊,该如何拓展到更高维度呢?
这时候林晓一笑,PPT再次翻页,回归到了他报告上面最后的那几行式子。
【H^2(S2, Z/2(1))≌ H^2 ́et(S2,C, Z/2(1))……】
“现在,大家请看这几行式子。”